Statistical Modeling for Improved Land Cover Classification

نویسندگان

  • Yunxin Zhao
  • Xiaobo Zhou
  • K. Palaniappan
چکیده

Novel statistical modeling and training techniques are proposed for improving classification accuracy of land cover data acquired by LandSat Thermatic Mapper (TM). The proposed modeling techniques consist of joint modeling of spectral feature distributions among neighboring pixels and partial modeling of spectral correlations across TM sensor bands with a set of semi-tied covariance matrices in Gaussian mixture densities (GMD). The GMD parameters and semi-tied transformation matrices are first estimated by an iterative maximum likelihood estimation algorithm of ExpectationMaximization, and the parameters are next tuned by a minimum classification error training algorithm to enhance the discriminative power of the statistical classifiers. Compared with a previously proposed single-pixel based Gaussian mixture density classifier, the proposed techniques significantly improved the overall classification accuracy on eight land cover classes from imagery data of Missouri state.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Post-Classification Enhancement in Improving the Classification of Land Use/Cover of Arid Region (A Case Study in Pishkouh Watershed, Center of Iran)

Classifying remote sensing imageries to obtain reliable and accurate LandUse/Cover (LUC) information still remains a challenge that depends on many factors suchas complexity of landscape especially in arid region. The aim of this paper is to extractreliable LUC information from Land sat imageries of the Pishkouh watershed of centralarid region, Iran. The classical Maximum Likelihood Classifier ...

متن کامل

پایش و پیش‌بینی روند تغییرات کاربری اراضی با استفاده از تصاویر ماهواره‌ای و زنجیرۀ مارکوف (مطالعۀ موردی: حوزۀ آبخیز سمل- استان بوشهر)

Assessment of land use spatiotemporal changes provide valuable data for managers to elaborate plans. Land use change modeling is one of the methods used by planers to manage land use changes. Detection of such changes may help decision makers and planners to understand the factors in land use and land cover changes in order to take effective and useful measures. Remote sensing (RS) and geograph...

متن کامل

Development of an Automatic Land Use Extraction System in Urban Areas using VHR Aerial Imagery and GIS Vector Data

Lack of detailed land use (LU) information and efficient data collection methods have made the modeling of urban systems difficult. This study aims to develop a novel hierarchical rule-based LU extraction framework using geographic vector and remotely sensed (RS) data, in order to extract detailed subzonal LU information, residential LU in this study. The LU extraction system is developed to ex...

متن کامل

Land use impacts on surface water quality by statistical approaches

Surface waters are the most important economic resource for humans which provide water for agricultural, industrial and anthropogenic activities. Surface water quality plays vital role in protecting aquatic ecosystems. Unplanned urbanization, intense agricultural activities and deforestation are positively associated with carbon, nitrogen and phosphorous related water quality parameters. Multip...

متن کامل

Micro-classification of orchards and agricultural croplands by applying object based image analysis and fuzzy algorithms for estimating the area under cultivation

Remote sensing technology is one of the most efficient and innovative technologies for agricultural land use/cover mapping. In this regard, the object-based Image Analysis (OBIA) is known as a new method of satellite image processing which integrates spatial and spectral information for satellite image process. This approach make use of spectral, environmental, physical and geometrical characte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003